Connected 2 - Dominating Sets and Connected 2 - Domination Polynomials of the Complete Bipartite Graph $\boldsymbol{k}_{2, \boldsymbol{m}}$.

Y. A. Shiny ${ }^{1}$
T. Anithababy ${ }^{2}$

Abstract

Let $G=(V, E)$ be a simple graph. Let $D_{c_{2}}(G, j)$ be the family of connected 2-dominating sets in G with cardinality j and $d_{c_{2}}(G, j)=\left|D_{c_{2}}(G, j)\right|$. Then the polynomial $D_{c_{2}}(G, x)=\sum_{j=\gamma_{c_{2}}(G)}^{|V(G)|} d_{c_{2}}(G, j) x^{j}$, is called the 2-domination polynomial of G where $\gamma_{c_{2}}(G)$ is the connected 2- domination number of G.Let $D_{c_{2}}\left(k_{2, m}, j\right)$ be the family of connected 2 -dominating sets of the Complete bipartite graph $k_{2, m}$ with cardinality j and let $d_{c_{2}}\left(k_{2, m}, j\right)=\left|D_{c_{2}}\left(k_{2, m} j\right)\right|$. Then the connected $2-$ domination polynomial $D_{c_{2}}\left(k_{2, m}, x\right)$ of $k_{2, m}$ is defined as $D_{c_{2}}\left(k_{2, m}, x\right)=\sum_{j=\gamma_{c_{2}}\left(k_{2, m}\right)}^{\left|V\left(k_{2, m}\right)\right|} d_{c_{2}}\left(k_{2, m}, j\right) x^{j}$, where $\gamma_{c_{2}}\left(k_{2, m} j\right)$ is the connected 2 - domination number of $k_{2, m}$. In this paper, we obtain a recursive formula for $d_{c_{2}}\left(k_{2, m}, j\right)$.Using this recursive formula, we construct the connected 2 -domination polynomial $D_{c_{2}}\left(k_{2, m}, x\right)=$ $\sum_{j=3}^{m+2} d_{c_{2}}\left(k_{2, m}, j\right) x^{j}$, where $d_{c_{2}}\left(k_{2, m}, j\right)$ is the number of connected 2-dominating sets of $k_{2, m}$ of cardinality j and some properties of this polynomial have been studied.

Keywords: Dominating, Connected and cardinality
2010 Mathematical classification number: 05C69, 54D053.

[^0]
1. Introduction

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple graph of order, $|\mathrm{V}|=\mathrm{m}$. For any vertex $\mathrm{v} \in \mathrm{V}$, the open neighbourhood of v is the set $N(v)=\{u \in V / u v \in E\}$ and the closed neighbourhood of V is the set $N[v]=N(v) \cup\{v\}$. For a set $S \subseteq V$, the open neighbourhood of S is $N(S)=$ $U_{v \in S} N(v)$ and the closed neighbourhood of S is $N(S) \cup S$.A set $D \subseteq V$ is a dominating set of G, if $N[D]=V$ or equivalently, every vertex in $V-D$ is adjacent to atleast one vertex in D.The domination number of a graph G is defined as the cardinality of a minimum dominating set D of vertices in G and is denoted by $\gamma(G)$. A dominating set D of G is called a connected dominating set if the induced sub-graph $<D>$ is connected. The connected domination number of a graph G is defined as the cardinality of a minimum connected dominating set D of vertices in G and is denoted by $\gamma_{c}(G)$.

A graph $G=(V, E)$ is called a bipartite graph if its vertices V can be partitioned into two subsets V_{1} and V_{2} such that each edge of G connects a vertex of V_{1} to a vertex of V_{2}. If G contains every edge joining a vertex of V_{1} and a vertex of V_{2} then G is called a complete bipartite graph. It is denoted by $k_{m, n}$, where m and n are the numbers of vertices in V_{1} and V_{2} respectively. Let $k_{2, m}$ be the Complete bipartite graph with $m+2$ vertices. Throughout this paper let us take $V\left(k_{2, m}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{m+1}, v_{m+2}\right\}$ and $E\left(k_{2, m}\right)=\left\{\left(v_{1}, v_{3}\right),\left(v_{1}, v_{4}\right),\left(v_{1}, v_{5}\right), \ldots,\left(v_{1}, v_{m+1}\right),\left(v_{1}, v_{m+2}\right),\left(v_{2}, v_{3}\right),\left(v_{2}, v_{4}\right)\right.$, $\left(v_{2}, v_{5}\right), \ldots,\left(v_{2}, v_{m+1}\right),\left(v_{2}, v_{m+2}\right)$.

As usual we use $\binom{m}{j}$ for the combination m to j. Also, we denote the set $\{1,2, \ldots \ldots \ldots, 2 m-1,2 m\}$ by $[2 m]$, throughout this paper.

2. Connected 2 - Dominating Sets of the Complete Bipartite Graph $\boldsymbol{k}_{2, \boldsymbol{m}}$

In this section, we state the connected 2 - domination number of the complete bipartite graph $\mathrm{k}_{2, \mathrm{~m}}$ and some of its properties.

Definition 2.1. Let G be a simple graph of order m with no isolated vertices. A subset $D \subseteq V$ is a $2-$ dominating set of the graph G if every vertex $v \in V-D$ is adjacent to atleast two vertices in D. A $2-$ dominating set is called a connected $2-$ dominating set if the induced subgraph $\langle D\rangle$ is connected.

Definition 2.2. The cardinality of a minimum connected 2 - dominating sets of G is called the connected 2 - domination number of G and is denoted by $\gamma_{C_{2}}(G)$.

Lemma 2.3 For all $m \in z^{+},\binom{m}{j}=0$ if $j>m$ or $j<0$.

Theorem 2.4

$$
d_{c 2}\left(k_{2, m}, j\right)=\left\{\binom{m+2}{j}-\binom{m+1}{j}-\binom{m}{j-1} \text { for } 3 \leq j \leq m+2\right.
$$

Connected 2 - Dominating Sets and Connected 2 - Domination Polynomials of the Complete Bipartite Graph $k_{2, m}$.

Proof: Let the partite sets of $k_{2, m}$ be $V_{1}=\left\{v_{1}, v_{2}\right\}$ and $V_{2}=\left\{v_{3}, v_{4,}, \ldots, v_{m+1}, v_{m+2}\right\}$. Since the subgraph induced by the vertex set as $\left\{v_{1}, v_{2},\right\}$ is not connected, every connected 2 -dominating set of $k_{2, m}$ must contain the vertex $\left\{v_{1}\right\}$ or $\left\{v_{2}\right\}$ or $\left\{v_{1}, v_{2},\right\}$. When $3 \leq j \leq m$, every connected 2 -dominating set must contain $\left\{v_{1}, v_{2}\right\}$. Since, $\left|V\left(k_{2, m}\right)\right|=m+2, k_{2, m}$ contains $\binom{m+2}{j}$ number of subsets of cardinality j. Since, the subgraphs induced by $\left\{v_{1}, v_{2}\right\}$ and $\left\{v_{3}, v_{4}, \ldots, v_{m+1}, v_{m+2}\right\}$ are not connected, each time $\binom{m+1}{j}$ number of subsets of $k_{2, m}$ of cardinality j and $\binom{m}{j-1}$ number of subsets of $k_{2, m}$ of cardinality $j-1$ are not connected 2 -dominating sets. Hence, $k_{2, m}$ contains $\binom{m+2}{j}-\binom{m+1}{j}-\binom{m}{j-1}$ number of subsets of connected 2 -dominating sets, when $3 \leq j \leq m$.

Therefore, $d_{c 2}\left(k_{2, m}, j\right)=\binom{m+2}{j}-\binom{m+1}{j}-\binom{m}{j-1}$ for all $3 \leq j \leq m$.
When the cardinality is $m+1$, every subset of $k_{2, m}$ containing $\left\{v_{1}\right\}$ or $\left\{v_{2}\right\}$ are connected 2 -dominating sets. Therefore, two more sets are connected 2 -dominating sets when the cardinality is $m+1$.
Hence, $d_{c 2}\left(k_{2, m}, j\right)=\binom{m+2}{j}-\binom{m+1}{j}-\binom{m}{j-1}+2$, when $j=m+1$.
Since, there is only one subset of $k_{2, m}$ with cardinality $m+2$ and that set is a connected 2 -dominating set. we get $d_{c 2}\left(k_{2, m}, j\right)=\binom{m+2}{j}$ when $j=m+2$.

Theorem 2.5. Let $k_{2, m}$ be the complete bipartite graph with $m \geq 3$. Then
(i) $d_{c 2}\left(k_{2, m}, j\right)=d_{c 2}\left(k_{2, m-1}, j\right)+d_{c 2}\left(k_{2, m-1}, j-1\right)$
(ii) $d_{c 2}\left(k_{2, m}, j\right)=d_{c 2}\left(k_{2, m-1}, j\right)+1$ if $j=3$.
(iii) $d_{c 2}\left(k_{2, m}, j\right)=d_{c 2}\left(k_{2, m-1}, j\right)+d_{c 2}\left(k_{2, m-1}, j-1\right)-2$ if $j=m$.

Proof:

(i) By Theorem 2.4, we have,

$$
\begin{aligned}
& d_{c 2}\left(k_{2, m}, j\right)=\binom{m+2}{j}-\binom{m+1}{j}-\binom{m}{j-1} \text { for all } 3 \leq j \leq m+2 . \\
& d_{c 2}\left(k_{2, m-1}, j\right)=\binom{m+1}{j}-\binom{m}{j}-\binom{m-1}{j-1} \\
& d_{c 2}\left(k_{2, m-1}, j-1\right)=\binom{m+1}{j-1}-\binom{m}{j-1}-\binom{m-1}{j-2} .
\end{aligned}
$$

Consider, $d_{c 2}\left(k_{2, m-1}, j\right)+d_{c 2}\left(k_{2, m-1}, j-1\right)=\binom{m+1}{j}-\binom{m}{j}-\binom{m-1}{j-1}+$ $\binom{m+1}{j-1}-\binom{m}{j-1}-\binom{m-1}{j-2}$.
$=\binom{m+1}{j}+\binom{m+1}{j-1}-\left[\binom{m}{j}+\binom{m}{j-1}\right]-\left[\binom{m-1}{j-1}+\binom{m-1}{j-2}\right]$
$=\binom{m+2}{j}-\binom{m+1}{j}-\binom{m}{j-1}$.
$=d_{c 2}\left(k_{2, m}, j\right)$.
Therefore,
$d_{c 2}\left(k_{2, m}, j\right)=d_{c 2}\left(k_{2, m-1}, j\right)+d_{c 2}\left(k_{2, m-1}, j-1\right)$ for all $4 \leq j \leq m+2$ and $j \neq m$.
(i) When $j=3, d_{c 2}\left(k_{2, m}, 3\right)=\binom{m+2}{3}-\binom{m+1}{3}-\binom{m}{2}$ by Theorem 2.4
$=\binom{m+1}{2}-\binom{m}{2}$
$=\binom{m}{1}$
Consider, $d_{c 2}\left(k_{2, m-1}, 3\right)=\binom{m+1}{3}-\binom{m}{3}-\binom{m-1}{2}=\binom{m}{2}-\binom{m-1}{2}$
$=\binom{m-1}{1}$
$=m-1$.
That is, $d_{c 2}\left(k_{2, m-1}, 3\right)=d_{c 2}\left(k_{2, m}, 3\right)-1$.
Therefore, $d_{c 2}\left(k_{2, m}, 3\right)=d_{c 2}\left(k_{2, m-1}, 3\right)+1$.
Hence, $d_{c 2}\left(k_{2, m}, j\right)=d_{c 2}\left(k_{2, m-1}, j\right)+1$ if $j=3$.
(ii) When $j=m$,
$d_{c 2}\left(k_{2, m}, m\right)=\binom{m+2}{m}-\binom{m+1}{m}-\binom{m}{m-1}$, by Theorem 2.2.
$=\binom{m+1}{m-1}-\binom{m}{m-1}$.
$=\binom{m}{m-2}$.
Consider, $\quad d_{c 2}\left(k_{2, m-1}, m\right)+d_{c 2}\left(k_{2, m-1}, m-1\right)=\binom{m+1}{m}-\binom{m}{m}-\binom{m-1}{m-1}+$
$2+\binom{m+1}{m-1}-\binom{m}{m-1}-\binom{m-1}{m-2}$
$=\binom{m+1}{m}-\binom{m+1}{m-1}-\left[\binom{m}{m}+\binom{m}{m-1}\right]-\left[\binom{m-1}{m-1}+\binom{m-1}{m-2}\right]+2$
$=\binom{m+2}{m}-\binom{m+1}{m}-\binom{m}{m-1}+2$
$=\binom{m+1}{m-1}-\binom{m}{m-1}+2$
$=\binom{m}{m-2}+2$.
$=d_{c 2}\left(k_{2, m}, m\right)+2$.
Therefore, $d_{c 2}\left(k_{2, m}, m\right)=d_{c 2}\left(k_{2, m-1}, m\right)+d_{c 2}\left(k_{2, m-1}, m-1\right)+2$.
Hence, $d_{c 2}\left(k_{2, m}, j\right)=d_{c 2}\left(k_{2, m-1}, j\right)+d_{c 2}\left(k_{2, m-1}, j-1\right)-2$ when $j=m$.

3. Connected 2 -Domination Polynomials of the Complete Bipartite Graph $\boldsymbol{k}_{\mathbf{2}, \boldsymbol{m}}$.

Definition 3.1. Let $d_{c 2}\left(k_{2, m}, j\right)$ be the number of connected 2 -dominating sets of the Complete bipartite Graph $k_{2, m}$ with cardinality j.Then, the connected 2 - domination

Connected 2 - Dominating Sets and Connected 2 - Domination Polynomials of the Complete Bipartite Graph $k_{2, m}$.

Polynomial of $k_{2, m}$ is defined as $D_{c_{2}}\left(k_{2, m}, x\right)=\sum_{j=\gamma_{c_{2}}\left(k_{2, m}\right)}^{\mid V\left(k_{2, m} \mid\right.} d_{c_{2}}\left(k_{2, m}, \mathfrak{j}\right) x^{j}$, where $\gamma_{c_{2}}\left(k_{2, m}\right)$ is the connected $2-$ domination number of $k_{2, m}$.

Remark 3.2 $\quad \gamma_{c_{2}}\left(k_{2, m}\right)=3$.
Proof. Let $k_{2, m}$ be the complete bipartite graph with partite sets $V_{1}=\left\{v_{1}, v_{2}\right\}$ and $V_{2}=$ $\left\{v_{3}, v_{4}, \ldots, v_{m+1}, v_{m+2}\right\}$. Let $v_{1}, v_{2} \in \mathrm{~V}\left(k_{2, m}\right)$ and v_{1}, v_{2} are adjacent to all the other vertices $v_{3}, v_{4}, \ldots, v_{m+1}, v_{m+2}$ of $k_{2, m}$. Also Since, v_{1} and v_{2} are not connected, every connected 2 -dominating set must contain the vertices v_{1}, v_{2} and one more vertex from $\left\{v_{3}, v_{4}, \ldots, v_{m+1}, v_{m+2}\right\}$. Therefore, the minimum cardinality is 3 . Hence, $\gamma_{c_{2}}\left(k_{2, m}\right)=3$.

Theorem 3.3 Let $k_{2, m}$ be the complete bipartite graph with $m \geq 3$.
Then $D_{c 2}\left(k_{2, m}, x\right)=(1+x) D_{c 2}\left(k_{2, m-1,} x\right)+x^{3}-2 x^{m}$.

Proof:

From the definition of connected 2 - domination Polynomial, we have,
$D_{c 2}\left(k_{2, m}, x\right)=\sum_{j=3}^{m+2} d_{c_{2}}\left(k_{2, m, \mathrm{j}}\right) x^{j}$.
$=d_{c 2}\left(k_{2, m}, 3\right) x^{3}+\sum_{j=4}^{m-1} d_{c_{2}}\left(k_{2, m,} \mathbf{j}\right) x^{j}+d_{c_{2}}\left(k_{2, m}, m\right) x^{m}+\sum_{j=m+1}^{m+2} d_{c_{2}}\left(k_{2, m}, \mathbf{j}\right) x^{j}$.
$=\left[d_{c_{2}}\left(k_{2, m-1}, 3\right)+1\right] x^{3}+\sum_{j=4}^{m+2}\left[d_{c_{2}}\left(k_{2, m-1,}, \mathrm{j}\right)+d_{c_{2}} k_{2, m-1,} j-1\right] x^{j}$
$+\left[d_{c_{2}}\left(k_{2, m-1}, m\right)+d_{c_{2}}\left(k_{2, m-1}, m-1\right)-2\right] x^{m}$, by Theorem 2.5
$=d_{c 2}\left(k_{2, m-1}, 3\right) x^{3}+x^{3}+\sum_{j=4}^{m+2} d_{c_{2}}\left(k_{2, m-1, \mathrm{j}}\right) x^{j}$

$$
+\sum_{j=4}^{m+2} d_{c_{2}}\left(k_{2, m-1, \mathrm{j}}-1\right) x^{j}-2 x^{m} .
$$

$=\sum_{j=3}^{m+2} d_{c_{2}}\left(k_{2, m-1, \mathrm{j}}\right) x^{j}+x \sum_{j=4}^{m+2} d_{c_{2}}\left(k_{2, m-1, \mathrm{j}}-1\right) x^{j-1}+x^{3}-2 x^{m}$.
$=D_{c 2}\left(k_{2, m-1,} x\right)+x D_{c 2}\left(k_{2, m-1,} x\right)+x^{3}-2 x^{m}$.
Hence, $D_{c 2}\left(k_{2, m}, x\right)=(1+x) D_{c 2}\left(k_{2, m-1}, x\right)+x^{3}-2 x^{m}$, for every $m \geq 3$.
Example 3.4 Let $k_{2,7}$ be the complete bipartite graph with order 9 as given in Figure 2.1.
$k_{2,7}$:

Figure 2.1
$D_{c_{2}}\left(K_{2,6,}, x\right)=6 x^{3}+15 x^{4}+20 x^{5}+15 x^{6}+8 x^{7}+x^{8}$.

By Theorem 3.3, we have,
$D_{c_{2}}\left(K_{2,7} x\right)=(1+x)\left(6 x^{3}+15 x^{4}+20 x^{5}+15 x^{6}+8 x^{7}+x^{8}\right)+x^{3}-2 x^{7}$.
$=6 x^{3}+15 x^{4}+20 x^{5}+15 x^{6}+8 x^{7}+x^{8}+6 x^{4}+15 x^{5}+20 x^{6}+15 x^{7}+8 x^{8}+x^{9}+x^{3}-2 x^{7}$.
$=7 x^{3}+21 x^{4}+35 x^{5}+35 x^{6}+21 x^{7}+9 x^{8}+x^{9}$
We obtain $d_{c_{2}}\left(k_{2, m}, j\right)$ for $3 \leq m \leq 15$ and $3 \leq j \leq 15$ as shown in Table 1.

j m	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
3	0	3	5	1												
4	0	4	6	6	1											
5	0	5	10	10	7	1										
6	0	6	15	20	15	8	1									
7	0	7	21	35	35	21	9	1								
8	0	8	28	56	70	56	28	10	1							
9	0	9	36	84	126	126	84	36	11	1						
10	0	10	45	120	210	252	210	120	45	12	1					
11	0	11	55	165	330	462	462	330	165	55	13	1				
12	0	12	66	220	495	792	924	792	495	220	66	14	1			
13	0	13	78	286	715	1287	1716	1716	1287	715	286	78	15	1		
14	0	14	91	364	1001	2002	3003	3432	3003	2002	1001	364	91	16	1	
15	0	15	105	455	1365	3003	5005	6435	6435	5005	3003	1365	455	107	17	1

Table 1. $d_{c_{2}}\left(k_{2, m}, j\right)$, the number of connected $2-$ dominating sets of $k_{2, m}$ with cardinality j.

In the following Theorem, we obtain some properties of $d_{c 2}\left(K_{2, m}, j\right)$.
Theorem: 3.5 The following properties hold for the coefficients of $D_{c_{2}}\left(K_{2, m}, x\right)$ for all m .
(i) $d_{c_{2}}\left(k_{2, m}, 3\right)=m$, for all $m \geq 3$.
(ii) $d_{c_{2}}\left(k_{2, m}, m+2\right)=1$, for all $m \geq 3$.
(iii) $d_{c_{2}}\left(k_{2, m}, m+1\right)=m+2$, for all $m \geq 3$.
(iv) $d_{c_{2}}\left(k_{2, m,} m\right)=\binom{m+2}{2}-\binom{m+1}{1}-m$.
(v) $d_{c_{2}}\left(k_{2, m}, m-1\right)=\binom{m+2}{3}-\binom{m+1}{2}-\binom{m}{2}$, for all $m \geq 4$.
(vi) $d_{c_{2}}\left(k_{2, m}, m-2\right)=\binom{m+2}{4}-\binom{m+1}{3}-\binom{m}{3}$, for all $m \geq 5$.
(vii) $d_{c_{2}}\left(k_{2, m} m-3\right)=\binom{m+2}{5}-\binom{m+1}{4}-\binom{m}{4}$, for all $m \geq 6$.

Connected 2 - Dominating Sets and Connected 2 - Domination Polynomials of the Complete Bipartite Graph $k_{2, m}$.
(viii) $d_{c_{2}}\left(k_{2, m}, m-i\right)=\binom{m+2}{i+2}-\binom{m+1}{i+1}-\binom{m}{i}$, for all $m \geq 4$ and $i \geq 1$.

Proof:

(i) $d_{c_{2}}\left(k_{2, m}, 3\right)=m$.

We prove this by induction on m .
When $m=3, d_{c_{2}}\left(k_{2, m}, 3\right)=3$.
Therefore, the result is true for $m=3$.
Now, suppose that the result is true for all numbers less than ' m ' and we prove it for m . By Theorem 2.6,
$d_{c_{2}}\left(k_{2, m}, 3\right)=d_{c_{2}}\left(k_{2, m-1}, 3\right)+1=m-1+1=m$.
(ii) $d_{c_{2}}\left(k_{2, m}, m+2\right)=1$, for all $m \geq 3$.

Since, there is only one connected $2-$ dominating set of cardinalities
$m+2, d_{c_{2}}\left(k_{2, m} m+2\right)=1$.
(iii) $d_{c_{2}}\left(k_{2, m}, m+1\right)=m+2$, for all $m \geq 4$.

Since, $d_{c_{2}}\left(k_{2, m}, m+1\right)=\{[m+2]-x / x \varepsilon[m+2]\}$,we have the result.
(iv), (v), (vi), (vii) and (viii) follows from Theorem 2.4.

4. Conclusion

In this paper, the connected $2-$ domination polynomials of the complete bipartite graph $K_{2, m}$ has been derived by identifying its connected $2-$ dominating sets. It also helps us to characterize the connected. Connected $2-$ dominating sets of cardinality j . We can generalize this study to any of complete bipartite graph $K_{n, m}$ and some interesting properties can be obtained.

References

[1] Alikhani. S, peng. Y. H." Introduction to Domination Polynomial of a Graph," Ars
Combinatoria, Available as arxiv:0905.2251|v| [math.co]14 May 2009.
[2] Alikhani. S, and Hamzeh Torabi," On Domination Polynomials of Complete Partite Graphs" World Applied Sciences Journal,9(1):23-24,2010.
[3] Sahib. Sh. Kahat. Abdul Jalil M. Khalaf and Roslan Hasni," Dominating sets and Domination Polynomials of Wheels". Asian Journal of Applied Sciences (ISSN:23210893), volume 02- Issue 03, June 2014.
[4] Sahib Shayyal Kahat, Abdul Jalil M. Khalaf and Roslan Hasni," Dominating sets and Domination Polynomials of Stars". Australian Journal of Basics and Applied Science, 8(6) June 2014, pp 383-386.
[5] A. Vijayan, T. Anithababy, G. Edwin," Connected Total Dominating Sets and

Connected Total Domination Polynomials of Stars and Wheels", IOSR Journal of Mathematics, Volume II, pp 112-121.
[6] A. Vijayan, T. Anithababy, G. Edwin, "Connected Total Dominating Sets and Connected Total Domination Polynomials of Fan Graphs $F_{2, n}$ ". International Journal of Mathematical Sciences and Engineering Applications (IJMSEA), Vol.10, No.1(April 2016), pp.135-146, ISSN:0473 -9424.

[^0]: ${ }^{1}$ Reg. No.: 19213042092006, Research Scholar (Full time), Research Department of Mathematics, Women's Christian College, Nagercoil. Affiliated by Manonmaniam Sundaranar University, Tamil Nadu, India, shinyjebalin@gmail.com
 ${ }^{2}$ Assistant Professor, Research Department of Mathematics, Women's Christian College, Nagercoil. Affiliated by Manonmaniam Sundaranar University, Tamil Nadu, India. anithasteve @ gmail.com
 ${ }^{3}$ Received on June 7th, 2022. Accepted on Aug 10th, 2022. Published on Nov 30th, 2022. doi: 10.23755/rm.v44i0.889. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors. This paper is published under the CC-BY licence agreement.

